
SOLID Python Development (3 days) 

 

© Olsen Software Limited 

 

 

SOLID Python Development (3 days) 

Course overview 

Python is one of the most popular programming languages on the planet at the moment. At 

the heart of its appeal is its simple syntax and rich set of libraries. 

It’s quite easy to write Python code, but it’s much harder to write high-quality Python code. 

How should you structure your code? How can you design for change, extensibility, 

consistency, and pluggability? How can you manage dependencies in a large code-base, so 

that your code is modular, stable, and manageable? How can you verify behaviour and type-

safety? 

This course shows how you can apply the “SOLID” principles to achieve all these goals. 

What you'll learn 

• Achieving type safety in Python via Python typing 

• Using object orientation effectively 

• Understanding and applying the Single Responsibility Principle (SRP) 

• Understanding and applying the Open/Closed Principle (OCP) 

• Understanding and applying the Liskov Substitution Principle (LSP) 

• Understanding and applying the Interface Segregation Principle (ISP) 

• Understanding and applying the Dependency Inversion Principle (DIP) 

• Test automation 

• Using Pydantic to implement model validation 

Prerequisites 

• Comfortable with Python programming 

Course details 

• Python Typing: The need for Python typing; Defining and verifying Python types; What 

types are available; Typing techniques  

• Object-Oriented Programming: Essential Concepts; Defining and Using a Class; Class-

Wide Members 

• The Single Responsibility Principle (SRP): Understanding the SRP; Functional example 

of SRP; OO example of SRP 

• The Open/Closed Principle (OCP): Understanding the OCP; Achieving the OCP via 

inheritance; Defining abstract classes/methods; Multiple inheritance; Understanding 

method resolution order 

• The Liskov Substitution Principle (LSP): Understanding the LSP; Using the LSP; 

Polymorphism 



SOLID Python Development (3 days) 

 

© Olsen Software Limited 

 

• The Interface Segregation Principle (ISP): Setting the scene; Interfaces in Python; 

Interfaces and the ISP 

• The Dependency Inversion Principle (DIP): Setting the scene; Dependency injection; 

Managing dependencies with the DIP 

• Test Automation: Getting started with testing; Using PyHamcrest matchers; Mocking; 

Additional testing techniques 

• Using Pydantic: Setting the scene; Specifying simple validation rules; Specifying 

complex validation rules 


