
C# 6 Advanced Development (4 days)

© Olsen Software Limited

C# 6 Advanced Development (4 days)

Course overview

Once you've mastered the core features of C# as a programming language, you're ready to

take the next step. The .NET Framework offers an incredibly rich and diverse set of APIs that

cover all aspects of contemporary development. This course takes a detailed look at the areas

of C# and .NET that have particular resonance to developers today, including asynchrony,

creating decoupled and adaptable systems, and test-driven development.

What you'll learn

 Asynchronous programming techniques

 Parallelization and concurrency

 Debugging multithreaded code

 Reflection and metadata

 Using CodeDom and dynamic code

 Dynamic programming

 Dependency injection

 Test-driven development

Prerequisites

 At least 6 months C# programming experience

Course details

 Asynchronous Programming: Creating tasks; Designing task-based APIs; Continuations;

Nested tasks

 Managing Tasks: Quick recap of async and await; A closer look at the Task class;

Working with TaskCompletionSource; Task scheduling

 Parallel Programming: Task-based and data-based parallelism; Using the Parallel class;

Using PLINQ; TPL DataFlow

 Debugging Multithreaded Code: Types of bugs; Visual Studio debugging techniques;

Going beyond Visual Studio

 Reflection and Metadata: Metadata storage; Loading assemblies; Examining types using

reflection; Creating instances using reflection; Late binding; Assembly metadata;

Defining and accessing custom attributes

 Integrating with Unmanaged Code: The dynamic keyword; Using The Dynamic

Language Runtime

C# 6 Advanced Development (4 days)

© Olsen Software Limited

 CodeDom and Dynamic Code: Overview of CodeDom; Compiling code; Using interfaces

effectively; Using reflection effectively; Using Reflection Emit; Creating dynamic

methods; Working with builder classes

 Dependency Injection: DI concepts; Tools for implementing DI; Overview of Unity;

Resolving dependencies; Designing for DI

 Test-Driven Development: TDD concepts; Tooling for TDD in .NET; Creating unit tests;

Mocking; Coverage; Following a TDD approach to development

