
Essential CSS

2

Contents

1. CSS terminology

2. Defining simple selectors

3. Defining relational selectors

4. Defining attribute selectors

5. Chaining and grouping selectors

6. Pseudo-classes and pseudo-elements

Demos folder:
Demos\A-CssEssentials

3

1. CSS Terminology

 Style rules

 Declarations

 Selectors

4

Style Rules

 A CSS style sheet is a collection of style rules

• For example, this style sheet comprises two style rules:

div {
 color: red;
}

p {
 color: blue;
}

Declarations

 Each style rule has a declaration block (i.e. the {} curly
brackets)

• The declaration block contains a series of declarations

• Each declaration is terminated by a semi-colon

 Each declaration defines:

• A property:value pair

• Properties are things like color, font-family, and width

• Values are things like red, Tahoma, and 30%

5

div {
 color: red;
 font-family: Tahoma, Arial, sans-serif;
 width: 30%;
}

Selectors

 Each style rule specifies a selector

• The selector defines which parts of the HTML document will be
affected by the declarations

 There are several types of selector:

• Element selectors

• Class selectors

• ID selectors

6

7

2. Defining Simple Selectors

 Selecting all elements

 Element selectors

 Class selectors

 Id selectors

 Combining selectors

8

Selecting All Elements

 You can define a rule that selects all elements
* {
 color: red;
}

Applies to all elements

9

Element Selectors

 Element selectors are the simplest kind of selector

• Also known as tag selectors

• Select all elements in the document that have a particular tag
name

 The example at the start of this chapter used element
selectors
• See ElementSelectors.html

div {
 color: red;
}

p {
 color: blue;
}

Applies to all <div> elements

Applies to all <p> elements

10

Class Selectors

 Class selectors apply to all elements that have a specified
CSS class

• Useful for applying the same style to different kinds of element

 Example
• See ClassSelectors.html

.optional {
 background-color: #eeeeff;
}

.required {
 background-color: #ffe0e0;
}

Applies to all elements whose class is "optional"

Applies to all elements whose class is "required"

11

ID Selectors

 ID selectors apply to an element that has a specified id
attribute

• Useful for targeting a specific <div>, for example

 Example
• See IdSelectors.html

#mainContent {
 color: blue;
 background-color: #eeeeff;
}

#additionalContent {
 color: red;
 background-color: #ffeeee;
}

Applies to the element whose id is "mainContent"

Applies to the element whose id is "additionalContent"

12

Combining Selectors

 You can combine element/class/id selectors

• Use this syntax:

 Example
• See CombiningSelectors.html

anElementName#anId.aClassName {
 declarations…
}

.standout {
 color: orange;
 font-size: 18pt;
 font-weight: bold
}

h1.standout {
 font-size: 36pt;
}

Applies to general elements whose class is "standout"

Applies to <h1> elements whose class is "standout"

13

3. Defining Positional Selectors

 HTML document structure

 Descendent selectors

 Child selectors

 Adjacent sibling selectors

14

HTML Document Structure

 Consider this simple HTML document

 The browser parses this HTML
and creates a "DOM" tree

• You can define CSS rules
that target descendants,
child elements, and adjacent siblings

<html>
 <head>
 <title>This is my simple page</title>
 <meta name="author" content="John Smith"/>
 <meta name="description" content="Simple example"/>
 </head>
 <body>
 <p id="intro">This is the intro to my page</p>
 <p id="main">This is the main content in my document</p>
 </body>
</html>

title

html

head body

meta meta p p

b

15

Descendant Selectors

 You can define a style rule that targets elements that are a
descendant of an element

• Also known as contextual selectors

• Use this syntax:

 Example
• See DescendantSelectors.html

• Discuss the rules, and describe the outcome

outerElement descendantElement {
 declarations…
}

16

Child Selectors

 You can define a style rule that targets elements that are a
direct child of an element

• Use this syntax:

 Example
• See ChildSelectors.html

• Discuss the rules again, and describe the outcome

parentElement > childElement {
 declarations…
}

17

Adjacent Sibling Selectors

 You can define a style rule that targets elements that are
siblings of an element (i.e. same parent)

• Use this syntax:

 Example
• See AdjacentSiblingsSelectors.html

• Discuss the rules again, and describe the outcome

firstElement + adjacentSiblingElement {
 declarations…
}

18

4. Defining Attribute Selectors

 Recap of attributes

 Overview of attribute selectors

 Testing for attribute presence

 Testing for an attribute value

19

Recap of Attributes

 Some HTML elements can have attributes

• For example:

<table>
 <tr>
 <td colspan="3">
 …

<input type="text" size="20" … />
<input type="submit" value="submit" … />

20

Overview of Attribute Selectors

 You can define style rules that target elements based on
attributes on the elements

• Use [] to denote the attribute of interest

 You can select elements based on:

• The presence of an attribute

• The value of an attribute

21

Testing for Attribute Presence

 You can define a style rule that targets elements that have
a particular attribute (regardless of its value)

• Use this syntax:

 Example
• See AttributePresenceSelectors.html

anElementName[anAttributeName] {
 declarations…
}

a[name] {
 color: blue;
}

a[href] {
 color: orange;
}

Applies to bookmarks

Applies to hyperlinks

22

Testing for an Attribute Value

 You can define a style rule that targets elements that have
a particular attribute value

• Use = to test the equality

• Use ^= to test for "starts with of equals" (buggy)

 Example
• See AttributeValueSelectors.html

img[src="euroImages/Wales.png"] {
 width: 200px;
}

img[src^="nonEuroImages/"] {
 width: 100px;
}

Applies to specific image

Applies to all images in a subfolder

23

5. Chaining and Grouping Selectors

 Chaining selectors

 Grouping selectors

24

Chaining Selectors

 You can chain selectors together

 Example

• What does this rule mean?

#mainContent div.narrative h4 + ul > li a[href^="http://acme.com"] {
 font-size: 20pt;
}

25

Grouping Selectors

 You can group selectors together

• Use a comma separator between selectors

 Example

• The following are equivalent!

h1 { color: orange; background-color: #ffeeee; }
h2 { color: orange; background-color: #ffeeee; }
h3 { color: orange; background-color: #ffeeee; }
h4 { color: orange; background-color: #ffeeee; }
h5 { color: orange; background-color: #ffeeee; }
h6 { color: orange; background-color: #ffeeee; }

h1, h2, h3, h4, h5, h6 { color: orange; background-color: #ffeeee; }

26

6. Pseudo-Classes and Pseudo-Elements

 Overview of pseudo-classes

 Using pseudo-classes with hyperlinks

 :focus pseudo-class

 Overview of pseudo-elements

 :first-child pseudo-element

 :first-line pseudo-element

 :first-letter pseudo-element

 :before and :after pseudo-elements

27

Overview of Pseudo-Classes

 CSS supports the concept of pseudo-classes

• i.e. additional qualifiers that you can place on a selector

• Allows you to fine-tune when the rule applies

 General syntax for pseudo-classes:
aSelector:pseudoClass {
 declarations…
}

Using Pseudo-Classes with Hyperlinks

 CSS supports several pseudo-classes for hyperlinks

 Note:
• :hover must come after :link and :visited

• :active must come after :hover

 Example
• See LinkPseudoClasses.html

28

Pseudo-class Description

:link Selects all unvisited links

:visited Selects all visited links

:hover Selects links on mouse-over

:active Selects the active link

:focus Pseudo-Class

 The :focus pseudo-class selects an element that has

input focus

 Example
• See FocusPseudoClass.html

29

aSelector:focus {
 declarations…
}

30

Overview of Pseudo-Elements

 CSS supports the concept of pseudo-elements

• i.e. additional qualifiers that you can place on a selector

• Allows you to fine-tune when the rule applies

 General syntax for pseudo-elements:
aSelector:pseudoElement {
 declarations…
}

The :first-child Pseudo-Element

 The :first-child pseudo-element selects an element

that is the first child of another element

 Example
• See FirstChildPseudoElement.html

31

aSelector:first-child {
 declarations…
}

The :first-line Pseudo-Element

 The :first-line pseudo-element selects the first line

within an element

 Example
• See FirstLinePseudoElement.html

32

aSelector:first-line {
 declarations…
}

The :first-letter Pseudo-Element

 The :first-letter pseudo-element selects the first

letter within an element

 Example
• See FirstLetterPseudoElement.html

33

aSelector:first-letter {
 declarations…
}

:before and :after Pseudo-Elements (1)

 The :before and :after pseudo-elements can be used

to insert some content before/after the content of an
element

34

aSelector:before {
 content: someContent
}

aSelector:after {
 content: someContent
}

:before and :after Pseudo-Elements (2)

 You can generate the following kind of content for the
:before and :after pseudo-elements:

• A string

• A URL

• A counter

 Note:

• You can reset and increment a counter as follows:

• To display a counter:

aSelector {
 counter-reset: aCounter optValue;
}

aSelector {
 counter-increment: aCounter optAmt;
}

aSelector {
 content: counter(aCounter, aListStyle);
}

For details of list styles, see:

www.w3.org/TR/CSS2/generate.html
#propdef-list-style-type

:before and :after Pseudo-Elements (3)

 Example
• See BeforeAndAfterPseudoElements.html

• Illustrates various content types and techniques

36

37

Any Questions?

